Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung.
نویسندگان
چکیده
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant DeltaF508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.
منابع مشابه
Mucociliary clearance in cystic fibrosis knockout mice infected with Pseudomonas aeruginosa.
In this study, we examined whether mucociliary clearance differed between cystic fibrosis (CF) knockout mice and wildtype controls. Additionally, we investigated whether infection with Pseudomonas aeruginosa, a common pathogen in the CF lung, affected this important host defence mechanism. Ciliary beat frequency (fcb) and particle transport (PT) were recorded using an in vitro lung explant prep...
متن کاملCystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis.
Previous findings indicate that the cystic fibrosis transmembrane conductance regulator (CFTR) is a ligand for Pseudomonas aeruginosa ingestion into respiratory epithelial cells. In experimental murine keratitis, P. aeruginosa enters corneal epithelial cells. We determined the importance of CFTR-mediated uptake of P. aeruginosa by corneal cells in experimental eye infections. Entry of noncytoto...
متن کاملA Review of The Role of The Microbiome on Immune Responses and Its Association With Cystic Fibrosis
In recent years, the microbiome has been recognized as a key regulator of immune responses. Evidence suggests that changes in the microbiome can lead to chronic disease and even exacerbation of the disease. Impairment of innate immunity resulting from microbial incompatibility may worsen host susceptibility to infection and exacerbate chronic lung diseases. Specific microbes play a key role in ...
متن کاملMolecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung.
The CFTR gene encodes a transmembrane conductance regulator, which is dysfunctional in patients with cystic fibrosis (CF). The mechanism by which defective CFTR (CF transmembrane conductance regulator) leads to undersialylation of plasma membrane glycoconjugates, which in turn promote lung pathology and colonization with Pseudomonas aeruginosa causing lethal bacterial infections in CF, is not k...
متن کاملCysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation
Cystic fibrosis (CF), the most common lethal monogenic disease in Caucasians, is characterized by recurrent bacterial infections and colonization, mainly by Pseudomonas aeruginosa, resulting in unresolved airway inflammation. CF is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a chloride channel in epithelia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 22 شماره
صفحات -
تاریخ انتشار 1997